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Abstract
We study the stability of the ground state of a two-identical-particles system in
an attractive external potential. We consider a repulsive interaction between the
particles. The existence of a bounded ground state as a function of the strength
of Hamiltonian parameters is studied for long- and short-range potentials. The
possible scenarios of ionization are discussed. Criteria for the existence of
a threshold-energy bound state and the energy critical exponent are given.
In particular, we show that for the case of an attractive long-range external
potential with short-range repulsive inter-particle interaction, a bound system
can become unstable increasing the strength of the attractive potential.

PACS numbers: 03.65.−w, 31.15.ae

(Some figures in this article are in colour only in the electronic version)

1. Introduction and definitions

Conditions for the existence of bound states in quantum few-body systems have been the
subject of research for many decades. Nowadays, the existence of a bound state and near-
threshold behavior for one-body systems in external potentials is well known. Upper and
lower bounds on the number of bound states for one-body systems were given in the pioneer
works of Jost and Pais [1] and Bargmann [2]. The critical behavior for eigenstates of one-body
spherical attractive potentials was studied as a function of the spatial dimension by Klaus and
Simon [3] and as a function of the angular momentum, considered as a continuous parameter,
by Lassaut et al [4]. A considerable amount of work had been done to obtain lower and upper
bounds on the energies of few and N-body systems ([5–7], and references therein). Numerical
methods to evaluate critical parameters were developed for one- [8] and few-body systems
[9, 10], including non-central interactions [11, 12].
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In this work, we study the existence of the ground state for two-body systems as a function
of the Hamiltonian parameters. Systems under consideration are formed by two identical
particles in an external radial potential (which can be a nucleus attraction). We consider spin-
independent Hamiltonians, so the spin variables are taken into account via symmetrization
of the spatial ground-state wavefunction. We study two-parameter Hamiltonians of the form
(atomic units are used throughout this paper)

H(λ1, λ2) = H0(λ1; 1, 2) + λ2W(1, 2), (1)

where H0(λ1; 1, 2) is a Hamiltonian for two identical non-interacting particles, W(1, 2) =
W(r12) is the repulsive interaction between the particles, which depends on the interparticle
distance r12, and λ1, λ2 are positive parameters. The Hamiltonian H0 has the form

H0(λ1; 1, 2) = h(λ1)(1) + h(λ1)(2), (2)

where h represents the one-particle Hamiltonian:

h(λ1) = − 1
2∇2 + λ1v(r). (3)

We consider more attractive than repulsive external interaction v(r). Then, it exists
λ

(c)
1 � 0 such that for λ1 > λ

(c)
1 , h(λ1) supports at least one bound state and it does not have

bound states for λ1 < λ
(c)
1 . We are interested in the existence of a two-particle bounded

ground state when a repulsive interaction between the particles is present. We consider purely
repulsive potentials W(r12) strong enough such that for fixed λ1, the two-body Hamiltonian
does not support a bound state for large values of λ2.

The stability of the ground state and near-threshold behavior of the ground-state energy
of one-body radial potentials had been completely studied. Conditions for the existence of
a one-body bound state at the threshold and asymptotics of the energy near λ

(c)
1 are known

[3, 4, 10].
For the one- and two-body potentials, we assume the following conditions.

(i) h(λ1) is self-adjoint for λ1 � 0 and H(λ1, λ2) is self-adjoint in the region (λ1 � 0,

λ2 � 0).
(ii) v(r) and W(r12) have no free parameters; then the Hamiltonian (1) depends only on λ1

and λ2.
(iii) Both the one-body and the two-body potentials are radial, that is v = v(r) and

W(1, 2) = W(r12).
(iv) The potentials decay at infinity, that is limr→∞ v(r) = 0 and limr12→∞ W(r12) = 0.
(v) v(r) is attractive enough so that ∃ 0 � λ

(c)
1 < ∞ such that the eigenvalue equation for the

ground state of the one-particle system, given by

h(λ1)ψ0(λ1; r) = E0(λ1)ψ0(λ1; r), (4)

has a bounded solution, E0(λ1) < 0 and ‖ψ0(λ1)‖ = 1 ∀ λ1 > λ
(c)
1 . E0

(
λ

(c)
1

) = 0 could be
an eigenvalue.

(vi) W is completely repulsive W(r12) > 0 ∀ r12 � 0.
(vii) ∃ λ̂1 > λ

(c)
1 such that for λ

(c)
1 < λ1 < λ̂1 we have 2E1(λ1) � E0(λ1), where E1(λ1) is

the energy of the first excited state of h(λ1)(E1(λ1) = 0 if h(λ1) supports just one bound
state).

(viii) The interparticle potential W obeys

〈ψ0(1), ψ0(2)|W−1(1, 2)|ψ0(1), ψ0(2)〉 > 0, (5)

where |ψ0(1), ψ0(2)〉 is the ground state of H0.

2
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As we will show below, conditions (vii) and (viii) give us a sufficient condition for the
non-existence of bound states for large values of λ2. These conditions are not too restrictive.
Condition (vii) holds for attractive short-range potentials, which satisfies r2v(r) → 0 for
r → ∞, because the critical values of λ1 for excited states are strictly greater than the critical
value λ

(c)
1 for the ground state. In the case of long-range potential, we note that for the Coulomb

potential, condition (vii) is fulfilled: ∀ λ1 > 0; then, in this case, λ̂1 = ∞. Condition (viii)
excludes a potential W which vanishes outside some sphere, as the simple step potential. For
this potential, the limit λ2 → ∞ represents finite-size particles that, for example, will have
bound states if v(r) is a Coulomb potential.

The eigenvalue equation for the ground state of the two-body system is given by

H(λ1, λ2)�0(λ1, λ2; r1, r2, r12) = E0(λ1, λ2)�0(λ1, λ2; r1, r2, r12). (6)

The main subject of this work is to characterize the ground-state stability diagram as a
function of the parameters (λ1, λ2). This means to find the region where a bounded ground
state, with E0(λ1, λ2) � E0(λ1) and ‖�0(λ1, λ2)‖ = 1, exists.

The critical line λ
(c)
2 (λ1) is defined by the threshold condition

E0
(
λ1, λ

(c)
2 (λ1)

) = E0(λ1). (7)

The asymptotic form of the ionization energy at the threshold defines the critical exponent α

[10]. We can define a critical exponent αh for the one-particle ground state energy:

E(λ1) ∼ −e
(
λ1 − λ

(c)
1

)αh
, for λ1 → λ

(c)+
1 , (8)

where e is a positive constant. Expressions for the critical exponent αh for a class of attractive
spherical potentials are given in [3, 4, 10]. For the two-body case, the energy depends on
two parameters and the threshold energy is the one-body ground-state energy. The critical
exponent αH is defined by the asymptotic behavior of the ionization energy near a critical
point (λ0

1, λ
0
2). This asymptotic behavior can be obtained in an arbitrary direction except the

one tangent to the critical line (along this line, the exponent is always greater than αH). For
convenience, we always use the direction of the λ1-axis

E0
(
λ1, λ

0
2

) − E0(λ1) ∼ −a
∣∣λ0

1 − λ1

∣∣αH
, for λ1 → λ0b

1 , (9)

where a is a positive constant. Here, the meaning of λ1 → λ0b
1 is that the line must always

approach the critical point from the region where a bounded two-body ground state exists. If
the line λ2 = λ0

2 is tangent to the critical line, we change λ1 by λ2 in the definition of αH.
Simon [13] proved that α = 1 iff the threshold energy is the eigenvalue of a bounded

solution for a given Hamiltonian. Then, in our context, the importance of the critical exponent
αH is that its value determines if the critical line belongs to the bounded region (αH = 1) or
not (αH > 1).

2. General results

In this section, we present the possible scenarios for the stability diagram for different potentials
and some general results that are valid for a large class of one- and two-body interactions. We
assume that the Hamiltonians satisfy conditions (i)–(viii).

Since W is a positive definite operator, H(λ1, λ2) does not have bound states for λ1 < λ
(c)
1 .

We also know that if the Hamiltonian H(λ1, λ2) supports bound states, the eigenenergies are
concave increasing functions of λ2 [14].

Following Thirring [14], we can get lower bounds for the energy of the system for
λ2 � λ̃2(λ1) applying the inequality

2E0(λ1) + λ2 〈ψ0(1)ψ0(2)| 1

W
|ψ0(1)ψ0(2)〉−1 (λ1) � E0(λ1, λ2), (10)

3
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where

λ̃2(λ1) = 2(E1(λ1) − E0(λ1))

〈
1

W

〉
0

, (11)

and E1(λ1) is the first excited state of the one-body Hamiltonian h(λ1). Replacing λ2 by its
limiting value λ̃2(λ1), and using condition (vii), we get

E0(λ1) � 2E1(λ1) � E0(λ1, λ̃2), (12)

which shows that λ̃2(λ1) is an upper bound for the critical curve λ
(c)
2 (λ1). A lower bound for

λ
(c)
2 (λ1) is provided by the following lemma.

Lemma 1. ∀ λ1 > λ
(c)
1 , ∃ λ∗

2 > 0 such that if 0 � λ2 < λ∗
2, then H(λ1, λ2) supports at least

one bound state.

Proof. Using the variational principle with the trial function �0(λ1; 1, 2) =
ψ0(λ1; r1)ψ0(λ1; r2), we have

E0(λ1, λ2) � 〈H(λ1, λ2)〉0 = 2E0(λ1) + λ2〈W 〉0(λ1). (13)

According to the variational principle, the existence of a bound state is assured if we find
a trial function such that the expectation value of H(λ1, λ2) is below the threshold energy
E0(λ1). This condition on (13) gives

E0(λ1) + λ2〈W 〉0(λ1) < 0 (14)

from which we define λ∗
2 as

λ∗
2(λ1) = |E0(λ1)|

〈W 〉0(λ1)
> 0. (15)

�

From the above results, it follows that the critical curve lies between the bounds:

λ∗
2(λ1) � λ

(c)
2 (λ1) � λ̃2(λ1). (16)

Now, we can describe the possible scenarios for the ground-state stability diagram. Three
different regions can exist in which H(λ1, λ2) supports states with 0, 1 or 2 particles bounded.
The first case occurs when h(λ1) does not have bound states. In the second case, h(λ1) has
at least one bound state and H(λ1, λ2) does not have any. Finally, both particles are bounded
if H has a bound state. The critical lines between these regions will be denoted as 1–0 line,
2–1 line and 2–0 line. The stability diagrams can be classified into three cases, which are
qualitatively shown in figure 1.

Case 1. No 2–0 line. This case is shown in figure 1(a). For λ2 > 0, ionization is always from
2 → 1 → 0 particles; no double ionization then exists for λ2 > 0.

Case 2. Finite 2–0 line. ∃ λ
(mc)
2 > 0 such that for λ2 < λ

(mc)
2 the two-body system has at least

one bound state for λ1 > λ
(c)
1 , but there is no bound states near λ

(c)
1 for λ2 > λ

(mc)
2 . Then the

line λ1 = λ
(c)
1 is a 2–0 line for λ2 < λ

(mc)
2 . This case is shown in figure 1(b).

Case 3. Infinite 2–0 line. This case is obtained from case 2 when λ
(mc)
2 → ∞. The line

λ1 = λ
(c)
1 is a 2–0 line, as is shown in figure 1(c). Note that in this case, the system can lose a

two-body bound state increasing the strength of the attractive potential.

4
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λ1

λ2

λ1 λ1λ(c)

λ
2

2e
-

1e
-

0e
-

1

2e
-

1e
-

λ(c)
1

1e
-

2e
-

0e
-

0e
-

λ(c)
1

Case 2 Case 3Case 1

(a) (b) (c)

(mc)

Figure 1. Qualitative stability diagrams. They show the three possible scenarios for the stability
diagram. Two of them have the double ionization line 2–0.

2.1. Existence of the 2–0 line

The existence of the 2–0 line is determined by the properties of the involved potentials v(r)

and W(r12). From (15) it can be seen that as λ1 → λ
(c)+
1 , the lower bound on the critical line

can be finite, infinite or zero, depending on the asymptotic behavior of the energy E0(λ1) and
〈W 〉0(λ1). Suppose the asymptotic expansion

〈W 〉0(λ1) ∼ w
(
λ1 − λ

(c)
1

)ω
for λ1 → λ

(c)+
1 , (17)

with w > 0. If ω > αh then, according to (15), the lower bound goes to infinity indicating
that the diagram is of type 3. For ω = αh, the lower bound is finite; then the diagram is of
type 2 or 3. If ω < αh the lower bound goes to zero. In this case, we can obtain a first-order
perturbative expansion of the two-body system energy in λ2:

E0(λ1, λ2) − E0(λ1) ∼ E0(λ1) + λ2〈W 〉0(λ1) + O
(
λ2

2

)
. (18)

For λ2 ∼ 0, and λ1 → λ
(c)
1 , E0(λ1, λ2)−E0(λ1) > 0 since E0(λ1) decays faster than 〈W 〉0(λ1).

Then, the diagram is of type 1.
We summarize these results in the following lemma.

Lemma 2. If the near-threshold behavior of 〈W(r12)〉0 is given by (17), then the stability
diagram for the ground-state energy of H(λ1, λ2) corresponds to

(i) case 1 if ω < αh,
(ii) case 2 or 3 if ω = αh,

(iii) case 3 if ω > αh.

When the one-body potential is of short range, we can prove that the stability diagram
can be of type 1, 2 or 3, that is, all cases are possible. A potential v(r) is defined as of short
range if limr→∞ r2v(r) = 0. Furthermore, in this case, the threshold energy E0 = 0 is not an
eigenvalue and the energy critical exponent is αh = 2 [3, 10].

Theorem 1. For short-range one-body potentials, the stability diagram is of type 1, 2 or 3.

Proof. From the near-threshold properties of short-range potentials, we know that the
single-particle wavefunction has the form ψ0

(
λ

(c)
1 + ε; r

) ∼ ε1/2ψ(ε; r) with ψ(0; r) >

5
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0 ∀ r > 0. On the other hand, from (vi) ∃ [a, b] such that W(r12) > 0 in [a, b]. Let
Wmin = minr12∈[a,b]W(r12); then

〈W 〉0 � ε2Wmin

∫
r12ε[a,b]

ψ2
0 (r1)ψ2

0 (r2) d3x1 d3x2 > aε2, a > 0. (19)

So as λ1 → λ
(c)+
1 , 〈W 〉0 ∼ w

(
λ1 −λ

(c)
1

)ω
with ω � 2. According to lemma 2, this implies

that the stability diagram could be of type 1, 2 or 3. �

2.2. Exponent αH

The existence of the 2–0 line is determined, as we saw in the previous subsection, by the
relative asymptotics of the external potential and the repulsive inter-particle interaction. In
this subsection, we study the critical exponent αH at the 2–0 line.

Lemma 3. If the 2–0 line exists, then αH = αh over this line.

Proof. The 2–0 line is defined by
(
λ1 = λ

(c)
1 , λ2

)
with λ2 < λ

(mc)
2 and E0

(
λ

(c)
1 , λ2

) =
E0(λ

(c)
1 ) = 0. Since E0(λ1, λ2) is an increasing function of λ2,

E0(λ1, λ2) > E0(λ1, 0) = 2E0(λ1). (20)

From (8), for λ1 → λ
(c)+
1 , we get

E0(λ1, λ2) > −2e
(
λ1 − λ

(c)
1

)αh; (21)

using (8), it follows that

αH � αh. (22)

Then, given that the 2–0 line exists,

E0(λ1, λ2) < E0(λ1), (23)

and in the region λ1↑λ
(c)
1 this equation becomes

E0(λ1, λ2) < −e
(
λ1 − λ

(c)
1

)αh ⇒ αH � αh. (24)

From (22) and (24), we conclude that

αH = αh (25)

�

In the next lemma, we prove that the existence of a one-body bound state at the threshold
λ

(c)
1 forbids the existence of a 2–0 critical line.

Lemma 4. If αh = 1, then a 2–0 line does not exist.

Proof. αh = 1 ⇒ ∥∥ψ0
(
λ

(c)
1

)∥∥ = 1 is an eigenfunction of h
(
λ

(c)
1

)
with a vanishing eigenvalue;

then 〈W 〉0
(
λ

(c)
1

)
> 0. A first-order perturbative expansion gives

E0(λ1, λ2) − E0(λ1) ∼ E0(λ1) + λ2〈W 〉0(λ1), (26)

for λ1 ∼ λ
(c)
1 and λ2 ∼ 0. The fact that E0 → 0 for λ1 → λ

(c)
1 and 〈W 〉0

(
λ

(c)
1

)
> 0 implies

that λ
(c)
2 → 0, because otherwise E0

(
λ

(c)
1 , λ2 ∼ 0

) − E0
(
λ

(c)
1

)
would be positive.

Furthermore, ∂E0
∂λ2

= 〈W 〉0
(
λ

(c)
1

)
> 0 at

(
λ

(c)
1 , λ2 = 0

)
; then applying the implicit function

theorem to E0(λ1, λ2) − E0 = 0, we get the value of
∂λ

(c)
2

(
λ

(c)
1

)
∂λ1

at λ2 = 0,

6
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∂λ
(c)
2

(
λ

(c)
1

)
∂λ1

= ∂(E0 − E0)

∂λ1

1
∂E0
∂λ2

(27)

= − 〈v〉0

〈W 〉0
� 0. (28)

Then 0 � ∂λ
(c)
2

(
λ

(c)
1

)
∂λ1

< ∞ at
(
λ

(c)
1 , λ2 = 0

)
. �

From lemmas 3 and 4 we obtain an extra conclusion, that is

Theorem 2. If a 2–0 line exists, then αH = αh > 1 over this line.

In the following section, we show how the different scenarios for the stability diagrams
are possible if the relative properties between repulsion and attraction are appropriate.
Section 4 will be focused entirely on Coulomb one-body attractive potentials.

3. Examples of the three cases of stability diagram

In what follows, we give a simple example and then a theorem for a certain class of external
potentials. With a short-range one-body potential v(r) the three behaviors are possible,
depending on the repulsion W(r12). For the single one-body potential, we use the Hulthén
potential [15]:

v(r) = − e−r

1 − e−r
. (29)

This potential is exactly solvable for s-waves; their energies and eigenfunctions have
analytic expressions. For the energies, we have

En(λ1) = − (2λ1 − (n + 1)2)2

8(n + 1)
, n = 0, . . . ,

√
2λ1 − 1, (30)

and particularly, for the ground state,

E0(λ1) = − (2λ1 − 1)2

8
, λ

(c)
1 = 1

2
. (31)

Since we are interested in regions where λ1 ∼ λ
(c)
1 , we can write λ1 = λ

(c)
1 + ε/2 =

(1 + ε)/2. Using this notation, the ground-state function has the form

ψ0(ε; r) = 1

4π
C(ε) e−εr/2 (1 − e−r )

r
, C(ε) =

√
ε

2
(1 + ε)(2 + ε). (32)

The three different critical pictures can be achieved changing the range of W .

Short-range interaction. For the repulsion between particles, we use a δ-like potential (note
that this potential does not fulfill all conditions (i)–(viii), but they are sufficient conditions),

W(�x1, �x2) = δ(�x1 − �x2) = 1

r2
1

δ(r1 − r2)δ(cos θ1 − cos θ2)δ(ϕ1 − ϕ2). (33)

For this kind of repulsion, the mean value of the potential is easily calculated:

〈W 〉0(λ) =
∫

d3x1

∫
d3x2 ψ2

0 (ε; r1)ψ
2
0 (ε; r2)δ(�x1 − �x2)

= 4π(5 ln 2 − 3 ln 3)ε2 + O(ε3). (34)

7
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From this result and (16), we obtain a lower bound λ∗
2 for the critical line λ

(c)
2 (λ1):

λ
(c)
2 (λ1) � λ∗

2 = 1/8π(5 ln 2 − 3 ln 3). (35)

According to lemma 2, this means that the diagram is in case 2 or 3.

Long-range interaction. As a typical example of a long-range potential, we choose a Coulomb
repulsion:

W(r12) = 1

r12
. (36)

With this potential, we obtain

〈W 〉0(λ1) = ε ln 4; (37)

then the diagram is of type 1, as expected from lemma 2.
The reason for the non-existence of the 2–0 line in the example above is related to the long

range of the repulsive interaction, and not to other characteristics of the potentials. Indeed,
we can understand this in the following qualitative way. It is known that the one-particle
wavefunction spreads when λ1 → λ

(c)
1 . Now, when the repulsive coupling λ2 is turned on, if

W is of short range the particles are so apart that they actually do not see each other, and the
system can have a bound state for λ2 > 0 near λ1 ∼ λ

(c)
1 . In the long-range case, the situation

is the opposite one. The repulsive interaction is long enough to tear apart the system for all
λ2 > 0 near λ1 ∼ λ

(c)
1 . These considerations are actually valid even when the attraction is of

long range, as is shown in the following section.

Theorem 3. If v(r) is of short range, αh = 2 and W is a Coulomb repulsion potential, then
the diagram corresponds to case 1.

Proof. For short-range potentials, we can define a constant R such that v(r) ∼ 0 for r > R.
Then the asymptotic form of the wavefunction is

ψ0(λ1; r)r→∞ ∼ exp(−√
2E0r)

r
, (38)

which is exact for v of compact support. This expression is valid for r > R, so we can write

ψ0(λ1; r) =
⎧⎨
⎩
Nψ<(λ1; r) if r < R

Nψ<(λ1;R)
R

r
exp(−

√
2E0(r − R)) if r > R,

(39)

where N is a normalization constant given by ‖ψ0‖ = 1. Since ψ< is a well-behaved function
in λ1 = λ

(c)
1 , we exclude it from the critical behavior. The norm of ψ< can be arbitrarily

chosen; we then use

4π

∫ R

0
ψ2

<(λ1; r)r2 dr = 1, (40)

from which we obtain

N (ε) =
[ √

E0√
2(2π

√
2E0 + R2ψ2

<(λ1;R))

]1/2

∼ Aεαh/4 for λ1 → λ
(c)
1 , (41)

where A > 0 is a constant, ε = λ1 − λ
(c)
1 and ψ2

<(λ1;R) is strictly positive and finite even
for λ1 = λ

(c)
1 . Since we do not know the explicit behavior of the potential near the origin,

ψ<(λ1;R) is undetermined.

8
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We are interested in the asymptotic condition for ε → 0. Since ψ<(λ1;R) does not
vanish and the coefficient in the expression for r > R is positive and non-zero for r = R, then

ψ0(λ1; r) = N (ε)C(ε)
exp(−√

2E0r)

r
, (42)

where C(ε = 0) = C0 > 0. Now we study the asymptotic behavior of 〈W 〉0 (λ1):

〈W 〉0(λ1) = 4π2
∫ ∞

0
dr1 r1ψ

2
0 (λ1; r1)

∫ ∞

0
dr2 r2ψ

2
0 (λ1; r2)

∫ r1+r2

|r1−r2|
dr12 r12W(r12). (43)

Up to here, we have not used the fact that W is a Coulomb potential. We now introduce
W(r12) = 1/r12 and solve the last integral, which results from straightforward calculations

〈W 〉0(λ1) = (4π)2
∫ ∞

0
dr>r>ψ2

0 (λ1; r>)

∫ r>

0
dr<r2

<ψ2
0 (λ1; r<)

= (4π)2N 4

{∫ R

0
dr>r>ψ2

<(r>)

∫ r>

0
dr<r2

<ψ2
<(r<)

+ C(ε)2
∫ ∞

R

dr>

exp(−2
√

2E0r>)

r>

[∫ R

0
dr<r2

<ψ2
<(r<)

+ C(ε)2
∫ r>

R

dr< exp(−2
√

2E0r>)

]}
. (44)

We are concerned with the dominant behavior of the integral for ε → 0. The first integral
in (44) is in the region r < R and is therefore a positive constant in ε = 0. From the
integrals between square brackets, it follows that the first equals 1 and the second is of order
ε−αh/2. Then the second integral is the dominant term. Let us define β and � by the relations
2
√

3E0 ∼ βεαh/2 and � = (4π)2A4C4
0

/
β > 0, respectively. Replacing in the integral, we

obtain

〈W 〉0(λ1) ∼ �εαh

∫ ∞

R

dr>

exp(−βεαh/2r>)

r>

(
exp(−βεαh/2R) − exp(−βαh/2εr>)

εαh/2

)
= �[exp(−βεαh/2R)E1(βεαh/2R) − E1(2βεαh/2R)]εαh/2, (45)

where E1(x) is the exponential integral [16], which diverges at x = 0, but the divergences
cancel out each other in the expression, resulting in

lim
ε→0

[exp(−βεαh/2R)E1(βεαh/2R) − E1(2βεαh/2R)] = ln 2. (46)

Then,

〈W(1, 2)〉0(λ1) ∼ εαh/2 for ε → 0; (47)

therefore, according to lemma 2, the diagram is of type 1
�

4. Long-range, Coulomb one-body potential

In this section, we show examples with v(r) as a Coulomb attraction and give the stability
diagram for different repulsion potentials. The results are expected to be valid for general long-
range potentials v(r) such that v(r) → 0 for r → ∞ and limr→∞ v(r)r2 → ∞. Long-range
potentials have a one-body critical strength λ

(c)
1 = 0.

The complete solution for the one-body Hamiltonian with the potential v(r) = −1/r is
presented in any textbook of quantum mechanics. The ground-state function and energy of
h(1) + h(2) are

ψ0(λ1; r1)ψ0(λ1; r2) = 1

π

√
2λ3

1e−λ1(r1+r2); E0(λ1, λ2 = 0) = −λ2
1. (48)

9
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We choose a short-range Yukawa potential for the interaction between particles:

W(r12) = exp(−r12)

r12
; (49)

then, from equation (43), we obtain

〈W 〉0 =
(
1 + 8λ1 + 20λ2

1

)
(1 + 2λ1)4

λ3
1. (50)

The energy can be expanded to first order in λ2 as

E0(λ1, λ2) = −λ2
1 +

(
1 + 8λ1 + 20λ2

1

)
(1 + 2λ1)4

λ3
1λ2 + O

(
λ2

2

)
. (51)

From lemma 2 and taking into account that αh = 2, the diagram is of type 3. The lower
bound λ∗

2(λ1) of (16) can be written as

λ
(c)
2 (λ1) � λ∗

2(λ1) = (1 + 2λ1)
4

2
(
1 + 8λ1 + 20λ2

1

) 1

λ1
∼ 1

λ1
for λ1 → 0, (52)

and we obtain λ2 = ∞ as a lower bound, which means that λ
(c)
2 → ∞ for λ1 → 0.

The upper bound λ̃2(λ1) of (16) assures the existence of the critical line. First, we must
check that 2E1(λ1) � E0(λ1) in order to fulfill condition (vii); indeed

2En(λ1) = −2
λ2

1

2(n + 1)2
, (53)

for n = 1, 2 E1 = −λ2
1

/
4 > −λ2

1

/
2. Since the Yukawa potential fulfills condition (viii), we

calculate λ̃2(λ1),

λ̃2 = λ2
1

3

4
〈rer〉0 = λ5

1

3
(
3 − 36λ1 + 140λ2

1

)
2(1 − 2λ1)6

. (54)

Note that the upper bound tends to infinity for λ1 → 1/2, and the lower bound tends to
infinity but for λ1 → 0. Figure 2 shows the variational lower and upper bounds.

Sharper lower bounds can be obtained using a simple variational function that includes
correlation between particles:

ψv(r1, r2, r12) =
√

16λ4
1

π

√
8λ2

1 + 35λ1c + 48c2
e−λ1(r1+r2)(1 + cr12), (55)

where c is a free parameter. We plot the critical line for different values of c ∈ (0,∞) in
figure 2.

From the stability diagram of figure 2, and its bounds, we obtain some conclusions about
the exact critical line. For example, all systems with λ2 < minλ1 λ∗

2(λ1) have at least one
bound state below the threshold. The exact critical line must have a minimum λ

(min)
2 at some

point between λm
1 and λM

1 , defined as

λm
1 = {min

λ1

λ1 : λ∗
2(λ1) = min

λ1

λ̃2(λ1)} (56)

and

λM
1 = {max

λ1

λ1 : λ∗
2(λ1) = min

λ1

λ̃2(λ1)}. (57)

These bounds for the minimum of the critical line are shown in figure 2. The fact that the
critical line presents a minimum has interesting physical consequences. For a given value of
λ2 > λ

(min)
2 , decreasing λ1 from λ1 = ∞ the system crosses the bounds in an ordered sequence

10
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λ2
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λ1

0

2e
-

1e
-

c=0

c=∞

λ1λ1
m M

Figure 2. Upper and lower bounds for the stability line when h is a hydrogen-like Hamiltonian and
W is a Yukawa potential. The trial wavefunction is given by equation (55), for several values of c.
The exact critical curve lies between the full lines, the upper bound and the better lower bound
(c = ∞). λm

1 and λM
1 are also shown.
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15
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25

λ2

0 5 10 15 20
λ1

0

10

20

2e
-

1e
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1

2

Figure 3. Sketch of the behavior in case 3. The dash-dotted curves are the upper and lower bounds
to the exact critical curve. Points 1 and 2 represent systems with a bounded ground state that
unbinds when λ1 increases or decreases, respectively.

lower–upper. As the exact critical line is in the region between lower and upper bounds, we
see that by decreasing λ1 the system unbinds as expected. If we now increase λ1 from λ

(c)
1 ,

the system crosses the bounds in the same order lower–upper. Then, it loses the bound state
increasing the attractive strength of the one-body potential λ1. A schematic sketch of this
process is shown in figure 3. From point 2 by decreasing λ1 the system unbinds, and from
point 1 by increasing λ1 the system also unbinds.
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A physical explanation of this behavior can be made in terms of the ranges of the
potentials. For a fixed value of λ2 and λ1 large enough the system binds two particles, no
matter how repulsive W is. For a less attractive coupling λ1, the system loses the bound
states because the repulsion W is too strong against the attraction. But, near λ

(c)
1 , as is well

known from the critical behavior of weakly bound systems, the wavefunction spreads and
the distance between the particles diverges. Indeed, 〈r12〉0 ∼ 1/λ1, then the short-range
repulsion W becomes unimportant and can be ignored because the distance between particles
is larger than the range of the repulsion potential. Then, the system is again bounded by the
long-range Coulomb attraction. If W is of long range, this argument is not valid. In fact,
if W(r12) � 1/r12 ∀ r12 > 0, the upper bound for the critical line forbids this behavior (see
remark (ii)).

(i) For W = 1/r12, the homogeneity of the potential allows us to obtain the functional form
of the critical line [18] λ

(c)
2 = Cλ1 ∼ 1.1λ1. There is no 2–0 line; the stability diagram is

then of type 1. Since the ground state is bounded at λ2 = λ
(c)
2 (λ1) [18], the exponent is

αH = 1.
(ii) Suppose two potentials Wa and Wb such that Wb > Wa . The corresponding Hamiltonians

are Hγ = h(1) + h(2) + λ2Wγ , γ = a, b, then

Ea(λ1, λ2) � 〈b|Ha|b〉
= Eb(λ1, λ2) + λ2〈b|Wa − Wb|b〉
� Eb(λ1, λ2), (58)

where |γ 〉 is the ground state of Hγ . This relation for the energies implies that
λ

(c)
2 (a) > λ

(c)
2 (b), meaning that if an upper (lower) bound for λ

(c)
2 (a)

(
λ

(c)
2 (b)

)
exists,

then it is an upper (lower) bound for λ
(c)
2 (b)(λ

(c)
2 (a)) too. So, from the previous remark,

if W > 1/r ∀ r , there is no 2–0 line, and the diagram is of type 3 (this does not include
1/rn potentials with n > 1, unless the tail is changed for 1/r).

(iii) For W = 1/rβ and 2 � β < 3, it follows that 〈W 〉0 ∼ λ
β

1 . The diagram is of type 3 for
β > 2 and of type 2 or 3 for β = 2. For β → 3, 〈W 〉0 → ∞ for all λ1.

(iv) If W has a short-range repulsive tail and a 1/r2 behavior at the origin, 〈W 〉0 ∼ λ3
1, then

the diagram is of type 3.

The last remark shows that the behavior at r = 0 of the repulsion is also important for the
behavior of 〈W 〉0 at λ1 → 0.

Finally, we search a potential that has the two bounds finite for all λ1; the diagram is then
of type 2. We search a bounded potential that fulfills W < 1/r , so the critical line is above
that for W = 1/r . A possible choice is

W =
(

− r2

2
+

3

2

)
�(1 − r) +

1

r2
�(r − 1). (59)

This potential fulfills condition (viii), so we calculate the upper and lower bounds which
are shown in figure 4. The limiting values for the bounds are

lim
λ1→0

λ∗
2(λ1) = lim

λ1→0

|E0(λ1)|
〈W 〉0

= 3

8
(60)

lim
λ1→0

λ̃2(λ1) = lim
λ1→0

2(E1(λ1) − E0(λ1))

〈
1

W

〉
0

= 9; (61)

then 3/8 � λ
(mc)
2 � 9 (see figure 1).
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0 5 10
λ1

0

10

20

λ2

Coulomb Repulsive Potential
Repulsive Potential eq.(63)

Figure 4. Upper and lower bounds for the repulsive potential W of (59). For comparison we also
show the bounds for W = 1/r , calculated from equations (11) and (15).

4.1. Existence of critical lines for a large class of potentials W

The upper and lower bounds for the Yukawa repulsion can be used to prove, using a variational
argument, that the critical line exists for other repulsive potentials with the same attractive
interaction. As proved above, for W = e−r/r there exists a critical line at least for λ1 > 1/2.
Note that if we make a dilation r → τr on the Hamiltonian and rescale the energy H → Hτ 2,
we obtain

H(λ1, λ2) → H(λ1/τ, λ2/τ). (62)

Then the upper bound obtained for the Yukawa potential now turns into

λ
(c)
1 (τ ) = λ

(c)
1 (1)τ λ

(c)
2 (τ ) = λ

(c)
2 (1)τ, (63)

which is an upper bound for e−τr/r . Making τ → 0, we see that the upper bound (54)
tends to 105λ1/32. This is the bound λ̃2(λ1) for W = 1/r , which can be easily calculated
from equation (11) as we did for the Yukawa potential. The bound keeps the divergence at
λ1 = τ/2 ∀ τ > 0, and vanishes for τ = 0.

With this family of upper bounds, we are able to prove the existence of the critical line for
several potentials. For example, potentials of the form 1/rn with n > 1 satisfy the condition
1/rn > e−τ(n)r/r , with τ(n) � (n−1)/e, so the critical lines for these potentials exist. In fact,
for λ2 = 0 there is always at least one bound state with energy 2E0(λ1). Since the threshold
is E0(λ1), from the continuity of the energy in λ2 we conclude that there exists a region below
the upper bound with λ2 > 0 where the system has a bounded ground state.

It is also possible to prove the existence of the 2–1 critical line for short-range one-body
potentials that are finite at the origin. For this purpose, we use an exponential potential e −r ,
which has an upper bound

λ̃2 = λ2
1

3

4
〈er〉0 = λ5

1

3
(
1 − 10λ1 + 32λ2

1

)
2(2λ1 − 1)5

. (64)

As in the Yukawa case, we use this bound to obtain a bound for e−τr ,

λ
(c)
1 (τ ) = λ

(c)
1 (1)τ λ

(c)
2 (τ ) = λ

(c)
2 (1)τ 2. (65)
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Figure 5. The graphic shows the upper bounds given by (54) and (64) for the exponential potential
and for the Coulomb potential (slash-dotted). Also the bounds for two exponentials are shown
(slashed): e−τr with τ = 0.8, 1.2 obtained from (65).

These bounds are shown in figure 5. Note that this bound actually proves the existence
of the critical line for every potential that fulfills

W(0) � 1, W ′(0) � −τ
(66)

W(r) > e−τr ∀ r > 0 for some τ > 0.

5. Conclusions

In this work, we presented the possible stability diagrams for the ground-state energy for two
identical particles in an external attractive potential. The critical exponent that characterizes
the asymptotic form of the energy near a critical point was also discussed.

The main result of this work is that a rebinding phenomenon may occur for some two-
body systems when the attractive coupling is decreased. As we have showed, this effect is
a consequence of a competition between the attractive long-range external potential and the
short-range inter-particle repulsion of these systems.

Remarkably, for one-body Coulomb attractive potentials the three types of diagrams
discussed in this work are possible.

We also showed that αH > 1 over a 2–0 line, and hence the wavefunction spreads when
λ1 → λ

(c)−
1 for λ2 < λ

(mc)
2 fixed. However, some questions are still unanswered. One of them

is the value of the critical exponent over the 2–1 line. We were unable to obtain this value in
a rigorous mathematical way, but we can argue that αH = 1, and then a bounded two-particle
solution exists over this line. Over a 2–1 line, the one-particle Hamiltonian has a well-defined
bounded ground state with negative energy. Two identical particles in the ground state have
the same spatial quantum numbers. Then the ground-state function of a two-identical particle

14
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system cannot spread continuously to a state corresponding to one particle bounded and one
particle unbounded, and therefore the critical exponent αH has to be equal to 1 over a 2–1 line.
This assumption was proved for the two-electron atom [18].

Another open question is the value of the critical exponent at the point
(
λ

(c)
1 , λ

(mc)
2

)
when

the stability diagram corresponds to case 2.
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